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Abstract—A theory of interactive mechanical and chemical degradation is derived for organic
materials. In the uncoupled form, the mechanical degradation is taken to be that derived from
flaw growth theory for polymers. The uncoupied chemical degradation is described by first-order
reaction rate theory as applied to static strength. In combined effect, the two mechanisms of
degradation arc coupled through the concept and charscterization of intrinsic strength.
Theoretical predictions are made for the lifetime of polymeric materials simultancously acted
upon by a constant load and a chemically active environment. Our results are compared with
experimental data upon the lifetime of composite aramid strands.

INTRODUCTION

There is complete agreement that materials age and degrade with time, but there is no
consensus on the underlying physical mechanisms, nor on how to characterize the changes
mathematically. Organic materials in general, and polymers in particular, are very
susceptible to environmental aging. It is now understood that materials undergo mechan-
ical damage as the result of loading conditions. The classic example of this type of
degradation is fatigue behavior. However, most of these types of behavior have only been
characterized on an empirical basis. Design procedures are needed by which materials can
be specified to fulfill a certain lifetime function for various load and environmental
histories.

Our attention will be restricted to the behavior of polymers. Consider first the
circumstance of aging as caused by irreversible chemical effects. We will refer to this as
chemical degradation. Perhaps the best known example of this is the molecular-scale chain
scission caused by exposure to ultraviolet light radiation. Other examples include the
diffusion of a chemical specie into the polymer that attacks and destroys various bonds,
including cross-linking sites. The oxidative degradation of elastomers is an example. There
is a related field known as chemical stress relaxation. Aklonis, MacKnight and Shen show
data of time-dependent moduli wherein the moduli decay in a time-dependent manner,
with a time constant directly related to the time constant of the chemical reaction [1}. In
the simplest form, the modulus degrades in a manner consistent with first-order reaction
kinetics. That is to say, a single exponential function serves to describe the time-dependent
change in the modulus. More complex behaviors result from higher-order or multiple-
reaction kinetics. See Schnabel for a treatment of such effects [2].

There is a different type of irreversible effect in polymers that is best understood on
a molecular scale. One widely employed model of molecular mobility relates to the concept
of free volume. As the free volume collapses, the molecular mobility decreases, and the
corresponding relaxation spectrum changes. This point of view has been fully explored by
Struik [3]. The behavior of this type admits characterization through the shifting of
relaxation and creep functions on logarithmic time scales. Although there may be special
cases in which this type of behavior may be considered to be reversible, it is generally
considered to be an irrreversible aging effect, whether one considers it to be due to
mechanical or chemical means.

Now, we turn to what has been called mechanical degradation, or aging. This
terminology typically refers to flaw growth under load. In the most general sense, this
behavior includes void nucleation and growth, crack growth and crack coalescence.

791



792 R. M. CHRISTENSEN

Formulations are made mostly from a continuum mechanical point of view, and have been
mostly focused on determining the kinetics of crack growth as a function of load in
polymers. Different, but related points of view, have been given by McCartney et al. [4-6).
Although the fundamental bases of these approaches are quite different, the end results
share striking similarities. Namely, the crack kinetics formulations represent generalization
of elastic fracture mechanics whereby the elastic compliance is replaced by the viscoelastic
creep function with its argument involving the crack velocity. Certainly, the controlled
growth of cracks in polymers degrades their ability to bear a sustained load; a state of
damage is being accumulated. Christensen has proposed a methodology for predicting the
lifetime of polymers from a mechanical degradation point of view [7].

Thus far, we have discussed separate areas of the chemical and mechanical degradation
of polymers. We have already cited oxidative attack as a chemical degradation example.
The straightforward static strength testing of polymers is the obvious and ultimate example
of a mechanical- or load-induced degradation. It is possible to account for both types of
damage through the insertion of additional parameters into constitutive relations. For
example, in reversible viscoelastic constitutive relations, the relaxation function appears in
the form E(¢r — 1) where ¢ is current time and < is the past time variable. This renders the
constitutive relation to a convolution form. However, aging effects can be included by
modifying the relaxation function to also depend upon the past history of strain, e(1)
through E(¢ — 1, t). Thus, the convolution form of the constitutive equation is violated and
irreversible effects can be accommodated. An example of this point of view is given by
Stouffer and Strauss [8). The approach to be followed here, however, is different for the
following reasons.

Thus far, uncoupled effects of mechanical and chemical degradation have been
considered. There are conditions, however, under which both types of degradation could
be operative. The simplest manner in which to combine these effects would be through a
linearly additive form. For example, let D be some measure of material damage. Then we
could write

D= F [e(t =)+, )

where the first term is the mechanical damage, expressed as a functional of the strain
history, €(t), and the second term is the chemical damage as a function or possibly a
functional of the chemical environmental agents, y, While this form accommodates the
separate effects of chemical and mechanical damage, it is simple to reason that this linearly
additive form could not possibly be correct. It is well understood that mechanical damage
cannot be given mathematical characterization in a simple superposition form. Thus, the
vastly more complicated state of combined chemical and mechanical degradation could not
admit a simple superposition form. Obviously, there would be iterative effects between
mechanical and chemical degradation. In order to understand the interactive chemical and
mechanical degradation of materials, we consider it necessary to proceed from a well-based
physical model of the effects. Without a physical model (or set of hypotheses), one could
simply postulate any number of mathematical formats which would relate to one set of
data but be totally useless in attempting to predict behavior under other conditions.

Our approach will be restricted to the case of polymeric materials under the action of
constant load while in a chemical environment. Thus, we are not attempting to produce
a comprehensive damage theory. Rather, we are seeking to develop a special theory of
mechanical and chemical degradation applicable to the conditions of stress rupture. First,
we consider the case of mechanical degradation due to flaw growth. The basic kinetic
theory is re-cxamined for application to our purpose. Then, the result is generalized to
include the interactive effect with a degrading chemical environment.

MECHANICAL DEGRADATION

We begin by recalling the low-speed and high-speed asymptotic results derived by
Christensen by the energy balance method [6]. Under high-speed conditions, it was found
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that the crack velocity is given by
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where the problem solved was that of an infinite strip subjected to fixed transverse normal
strain and steady-state growth of a semi-infinite crack. The notation in (2) is that Poisson’s
ratio, v is a fixed constant, 4 is the strip half-width, I is the surface energy content, L(1)
is the uniaxial creep spectrum, J(0) is the initial value of the creep function and g, is the
transverse stress far ahead of the crack. The corresponding low-speed result was found to
be
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where J(o0) is the long-time asymptotic value of the uniaxial creep function. In Christensen
[6] these formulae were stated in terms of the creep spectrum of the shear function rather
than as the uniaxial creep function used here. The difference involves a trivial
modification of the parameters « and y by factors involving Poisson’s ratio. The factors
« and y are nondimensional parameters that are independent of the load level and the
mechanical creep function. These asymptotic high- and low-speed formulae were derived
by representing the stress field in the problem by doubly infinite series. The representation
did not admit the inclusion of a stress singularity, thus a proper physical interpretation
of these results is that they are appropriate to a crack tip condition whereby damage or
surface conditions preclude the occurrence of a stress singularity. The equations noted
above from Christensen [here written as (2) and (3)] were obtained by expressing the energy
balance as a power expansion in (1/c) for (2) and in (¢) for (3) and by neglecting higher
order terms [6).

While eqns (2) and (3) served to validate the application of the energy balance method
to viscoelastic crack kinetics problems, the results were very limited due to their asymptotic
nature. It is necessary to have a general form for crack kinetics in order to approach
mechanical damage problems. For this purpose, we wish to show that the obvious
generalization of elastic fracture mechanics to the viscoelastic case produces results in
accordance with eqns (2) and (3). For the infinite strip problem containing a semi-infinite
crack, the elastic fracture mechanics result is ‘

_h
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where J is the elastic uniaxial compliance. The obvious generalization of (4) to viscoelastic
conditions is given by

. 2/h s
= A=A ®

where J(p/c) is the uniaxial creep function: its argument involves crack velocity, ¢, and
a parameter, p. In the most elementary approach, p should be taken to be a characteristic
dimension associated with the blunted crack tip region, such as the radius of curvature
at the crack tip. More sophisticated theories could seek to determine p as a function of
the variables of the problem, rather than treating it as a fixed parameter, as is done here.

We now show that the general form of (5) is consistent with the asymptotic results of (2)
and (3).
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Recall the forms characterizing the creep spectrum either through
J(t)=J? L()[l —e "]dr + J(0) 6)
or
J(t)= —Lw L(®)[e~"] dt + J(0). @)

Consider first the high-speed case. Using (6), write the creep function in (5) as
J(p/c)=J L)1 — e *=)dt + J(0). (8)
0

Expand the exponential in (8) as a power series, to obtain (8) as

Jpje) = J' " Lz)p/er) de + OUI) + J(0). o)
0

Neglecting the terms of order 1/c? in (9) gives (5) as

o} 2L /A (10)
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Solving (10) explicitly for the crack velocity, ¢, gives us
~ 0
cx 5F J(O). (11
h(1 — v

This form is identical with the high-speed asymptotic result in (2), with 2ah/(1 — v?)
replaced by p. Other kinetic crack growth theories which have arguments of the creep
function different from that in (5) would not give a result consistent with the asymptotic
form of (2).

Next, we turn to the slow-speed case. This situation is much more complicated than
the high-speed case just considered. The reason for this being that the exponential term
in (7) or the corresponding form for (6) admits a power series expansion for a large ¢ and
thus a small argument, but it does not have an expansion for a small ¢ and thus a large
argument. We will not be able to reduce (5) to slow-speed conditions by standard
asymptotic expansion means. Rather, we merely demonstrate that, through the use of some
reasonable approximate forms, (5) can be brought to the form of the slow-speed result in
(3). This equivalence of (5) and (3) must be approached by heuristic means. First, develop
an approximate form for (7). Replace the exponential term by the step function

e~ fh(dt — 1). (12)

Determine parameter, 4, by minimizing the total square error over the semi-infinite intervai
of the difference between these two forms. We found that

A=In2. (13)
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Now, using (12) as a replacement in (7), we find

J()= —Jm L(z)dt + J(). (14)
i

Using (12) is not as drastic as it might seem to be at first. Typically, spectra are spread
over many decades of times. Accordingly, when viewed on a log scale, the difference of
the two forms in (12) is not great.

Still, (14) is not convenient to use. It does show that for large time arguments, only
the long time part of the spectrum is involved. However, for later purposes, a form is
needed which involves the time variable outside of the integral. This is required so that
we can solve for velocity explicitly when we replace time by the velocity-dependent
argument shown in (5). We wish to show that the integral in (14) is close to the integral
shown below:

%J tL(r)dz. (15)
6
Decompose this integral into the two parts:
1 [* 1 1 [=
—J tL(r)dz =—j tL(t)dr +-J tL(t)dr. (16)
t Jo L Je L)

Consider first a discrete spectrum of the form

L@= Y L), a”n
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where (7)) are delta functions spaced at one-decade intervals. Take the time variable to
be between the last two retardation times as

Ty <1 <Typ (18)

Assume that the amplitudes L; change at a rate less rapid than as 1/r. With these
conditions, the first integral on the right hand side of (16) can be neglected, leaving

lJm rL(r)dr g-l-‘r’ tL(t) dr. (19)
t 0 ! t

Now, with the condition in (18), ¢ and 7 are of the same order of magnitude, thus

%fth(t)dr > r L(z)dr. (20)
0 t

Similar conditions are assumed to apply for a continuous spectrum, as just described for
the discrete spectrum. Using (20), then (14) can be written as

J() = —% L “iL(t)de +J(0), t, @1

where the parameter 4 is so close to one that it can be neglected and 1, is the highest
retardation time in the spectrum. The form in (21) is what is needed to obtain a slow-speed
result. We must emphasize that it is not valid in an asymptotic sense of long times. Rather,
it has been derived as being valid in the range of times near the longest retardation time
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of the material. However, such times are so large that the end result of this derivation will
correspond to a very small velocity value.

Replace (5) with (21), with the appropriate change of argument to obtain

) 2T [h

0, = s (22)
(l—vz)[——J tL(t)dt +J(oo)]
P Jo
Solving (22) for crack velocity, gives
| h(l - vz)ayz
cx (23)

p ©
i J‘ tL(z)dt
L 0

This expression is identical with the low-speed asymptotic result in (3), with yA(1 —v3)/2
replaced by parameter p. We emphasize that (23) has been derived subject to the restriction
shown in (21), which, when expressed in terms of velocity, gives p /c = 1, where 7 is the
largest retardation time of the material.

To sum up, we have shown that the general kinetic crack growth formula, (5), gives
high- and low-speed results, (11) and (23), which are in agreement with the asymptotic
high- and low-speed forms in (2) and (3) derived earlier by Christensen [6). Equation (11)
was found to be the asymptotic high-speed form of the general form in (5), whereas (23)
is a low-speed form; but in accordance with its manner of derivation, it does not have
asymptotic validity. Nevertheless, these results suffice to show that the general form in (5)
for kinetic crack growth corresponds to the previously found asymptotic results. Other
crack theories have an argument of the creep function which is different from the velocity
argument shown in (5). With this justification for the kinetic form in (5), we proceed to
utilize it in a life prediction methodology. Before proceeding explicitly to the lifetime
prediction matters, we first will seek to determine under what conditions the crack velocity
form (5) can be approximated by a power law form, as is commonly employed on an
empirical basis.

Following the derivation in Christensen [7], the creep function can be taken as a
“double” power law form:

Jo(1 + 7,27

O

O<sn<l), (24)

where J(0) = J, is the initial value and the asymptotic long time value of the creep function
is J(o) = (y,/y)Jo. Parameters n, y, and y, would be adjusted to fit data, typically over
many decades. Using (24) in (5) then gives

_2Typ"— o Joniph

" 25
o, Joh —2I (25)
Under the following restrictions:
2I'y, < 6,2py,h and 0,2 Joh <27, (26)
the first terms in the numerator and de .minator of (25) can be neglected to give
AN At
¢ =( "27} ) po. @

Thus, the crack velocity has a power law dependence upon stress. The conditions under
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which this approximation is true are derived from (26);

2Iy, ar
hJoy, <0< Joh' @)
It is physically plausible there would be an accessible intermediate stress range in which
(28) could be satisfied. With success in developing an approximate power law form for
crack growth, we will turn next to life prediction, to understand the possible limitations
implied by a power law form there.

Christensen derived the following expression (eqn 12 in Ref. [7]) for lifetime of a
polymeric material system under constant stress:

1/62 l_&z( I/n
= — | d, 29
J. (&’C—v‘> ‘ @)

where t is nondimensional time to failure, and ¢ is nondimensional stress as defined by

5=£,with)7=$, (30)
i 1

and where the intrinsic strength, o, is defined by

2r
o = m‘;. (31)

The method of derivation in (29) proceeds by associating dimension 4(¢) with that of the
half crack length, with A, being the initial flaw size. Then (25) is integrated to determine
the time until a single, isolated crack, subjected to constant stress, o, will grow to unstable
size. The intrinsic strength, ¢, relates to what is typically called the static strength or
instantaneous strength as opposed to the reduced strength behavior that occurs under
long-time, stress-rupture conditions. The concept and formalization of intrinsic strength
will be of great importance in the later formulation of interactive chemical and mechanical
degradation. The power law forms to be derived here also will be of later use. As it stands,
the relation in (29) has a much more complicated form than that of a simple power law
relation.

Having succeeded in deriving a power law form for crack velocity in (27) and (28), it
is reasonable to see if the life expression in (29) admits a power law form. Begin by
assuming

6?<7and 7 <1 (32)

These conditions are sufficient to neglect the last term in the denominator of the integral

in (29), leaving
e 1/62 —1_ 1 1n 4 3
- . 52{ L. (33)

To proceed further, expand the integral in (33) to obtain

1 Hn 1\ 1 1 \im-1
(1) () ) 4
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Substitute (34) into (33) and integrate to obtain
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where the first terms come from the upper limit, and the second terms come from the lower
limit. For ¢ < 1 and n < 1, the second and succeeding terms in the second bracket in (35)
can be neglected compared with the first term. Further, the first grouping of terms in (35),
of order ¢ 2, can be neglected compared with the term of order ¢ ~*. This leaves (35) as

T ==

1

TN (36)
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Thus, the power law form has been recovered. The following conditions for (36) to be valid
are

T

i

<6<l
F<€l BN
n<l

These are certainly possible conditions that could be satisfied for a particular material.
The revealing characteristic, however, is that the power law form for life cannot have any
validity as an asymptotically correct form, neither at very high nor very low stress levels.
Rather, there is merely the possibility of a power law form at an intermediate stress range
in viscoelastic materials. This range of limited validity of the power law form will be
sufficient for our purposes in the next section.

MECHANICAL AND CHEMICAL DEGRADATION

In the preceding section, we outlined a theory of mechanical degradation for conditions
of stress rupture. The essential aspect of the development was that of the growth due to
load of initial flaws to reach a critical size, at which time the material would rupture. As
a totally separate matter, materials can age chemically under a stress-free state. What then
must occur when a material is simultaneously subjected to load and an active chemical
environment? We consider that very complicated situation next.

Our interest centers on the practical situation of polymeric materials subjected to a
constant load, and simultaneously subjected to a degrading chemical environment. The
theory of the preceding section accounts for mechanical degradation with no chemical
degradation. Let us now consider separately the case of uncoupled chemical degradation.
Then, we shall interrelate the two effects. Materials under no load but in a deleterious
chemical environment are characterized by strength testing, that is, the material is aliowed
to chemically age for a specified period of time and then it is tested to determine its static
strength. When done in a sequence of times, the strength can then be expressed as a
function of time, assuming constant chemical environment. The static strength would be
written as

o,=f(t, 1) (38)

where y is the chemical parameter denoting the concentration or strength of the chemical
reactant or agent. In the most elementary form, if the reaction proceeds according to
first-order reaction kinetics, the chain scission and/or bond rupture would be expected to
occur at a corresponding rate. The static strength would then be expressed as a simple
exponential of the form:

o, =de ", (39
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where ¢ is a stress amplitude and the time constant, 1, would be a function of the
concentration of the chemical reactant. Although much more complicated forms could be
taken for the static strength degradation due to chemical environment, certainly (39) is the
simplest, most realistic form, inasmuch as it comes from reaction rate theory. Also, the
simple form of (39) adequately models a variety of chemical degradation data. Equation
(39) represents the result of a theory of chemical degradation at exactly the same level as
(29) represents a theory of mechanical degradation. One deals with the variation of static
strength due to a degrading chemical environment, while the other predicts the time to
failure of materials undergoing kinetic flaw growth (mechanical degradation) due to the
presence of internal stress. The problem now is to interrelate these two effects. This will
be done, first in a deterministic manner; thereafter, the method will be generalized to
account for statistical variability.

The key to synthesizing these two different theories of material degradation is to
recognize the relationship of each theory to the common characterization known as static
strength. Equation (39) directly reveals the effect of chemical degradation upon static
strength. The life prediction form of (29) involves the concept of intrinsic strength, (31),
through the nondimensional stress form (30). From (31), the intrinsic strength is seen to
be nothing more than the static strength of the material as determined by sufficiently fast
rates of testing, such that the material response is governed by the glassy value of the creep
function, J, = J(0). With this identification, we shall henceforth refer to the static strength
as the intrinsic strength, since the latter term herein has been given a physical meaning,
Accordingly, we note that the mechanical degradation theory in (29) depends upon the
intrinsic strength of the material, but the intrinsic strength of the material can be degraded
through chemical means, as for example in accordance with (39). This then provides the
coupling mechanism between the mechanical and chemical degradation effects.

We begin the derivation of interactive degradation by recalling the differential form for
flaw growth, (25), and its subsequent restriction to the power law region, (27), through
restrictions, (28). Rewrite (27) here as

da "__Jo’}’xﬂ” 2
(d:) ==3r "0 (40)

where now the characteristic dimension, A(t), is taken to be the half-length of the crack,
and ¢ is the applied stress. Writing (40) in terms of the intrinsic strength, (31), gives

(e

Were this separation of variables form integrated with o /s, being a constant, the power
law life prediction form of the previous section would be obtained. However, we now
introduce the effect of chemical degradation, whereby the intrinsic strength, g, is taken
to be a function of time according to the prescribed rate of chemical degradation. At this
point, it is important to note that we are developing a theory of mechanical and chemical
interaction only in the range where the mechanical degradation by itself would be of a
power law form. We do not attempt the more complicated problem involving behavior
outside the power law region.
Retaining the time dependence of o, integrate (41) to obtain

L"—f‘)““j“f ) e
n

@)

g;
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where 4, is the initial crack size and 7 is nondimensional time, written as the following;

ot (43)

Taking A(¢) to be large, representing a state of failure, we neglect the first term in the

numerator of (42) to obtain
o\ 1
f (;) dr = (44)

=1

n
This is the basic form we have been seeking. With specified g, = (1) due to chemical
degradation, then (44) can be integrated to determine the lifetime. We can rewrite the
chemical degradation form (39) in terms of nondimensionalized time as

0,=06 e (45)

where 7, is the time constant of chemical degradation. The combined forms of (44) and
(45) thus comprise the interactive theory of mechanical and chemical degradation. The key
to the present approach is the identification of the static strength degradation due to
chemical means with the intrinsic strength of flaw growth theory.

We take the applied stress, o, as being constant, insert (45) in (44) and integrate to give
the basic resulit:

nt, 2/nt,

= log
2loge 1_1 e
n

where log = log,, is conventionally used. Equation (46) then provides a deterministic
prediction of the nondimensional time to failure, 7, under constant stress and constant
chemical environment, with ¢ being the nondimensional stress according to

T +1], (46)

é==, @7

QlQ

which is normalized with respect to the amplitude in (39), rather than as in (30) where there
was no chemical degradation. Thus, ¢ is the intrinsic strength of the material before the
onset of chemical degradation. Although » relates to the exponent in the creep function
characterization, (24), as a practical matter it would be evaluated to fit lifetime experi-
mental data.

It should be noted that a procedure similar to that just given could be followed, but
rather than starting with the differential form in (40), we could have started with the
lifetime form in (36) and then let o; in & be chemically degraded. If the latter procedure
were followed, a completely different result would have been obtained. The approach
followed here, however, is preferable since it allows the degrading intrinsic strength, o, to
alter the crack growth kinetics which is a physically realistic circumstance.

Before evaluating (46) numerically, it is appropriate to outline the generalization of the
deterministic procedure just given to account for statistical variability.

To generalize the procedure to a statistical form, consider first the case of the initial
intrinsic strength, loosely called the static strength. According to (39), the variable ¢ is the
initial intrinsic strength in the deterministic theory. Now take the initial intrinsic strength
to be a random variable specified through its relation to a cumulative distribution function,

as .
CDF = F(g‘) N (48)

G
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where Cpy= F( ) is the cumulative distribution function of unspecified form and d,isa
statistical parameter of nondimensionalization, as for example the scale parameter in the
Weibull distribution. We solve (48), whatever its form, for ¢ in terms of Cy; and é, and
write the solution as

-~

o

S(Cop)’
where the function form f( ) depends upon F( ). We substitute (47) with (49) to obtain

(49)

6=

)IQ

G =

J(Cop). (50)

Q

3

With the statistical form of (50), the deterministic result in (46) can be generalized to this
statistical form:

nt, 2/n7,

T= log
2loge 1 g "
(; - 1)[;: S (Cnr):r

giving the statistical distribution of lifetimes parameterized with respect to the variable of
the cumulative distribution function. The procedure used to deduce (51) applies to any
distribution function; however, there is an inherent assumption in this statistical gener-
alization. All of the statistical variability has been accounted for by letting & in (45) be
a random variable. A consequence of this assumption is that the distribution of intrinsic
strength is independent of time as the chemical aging progresses. This is a rather strong
assumption, of course, but it is probably one of the simplest means of incorporating
statistical variability into an interactive theory of mechanical and chemical degradation.
More complicated forms could be taken whereby t in (45) is also allowed to be a random
variable. The advantage of the present approach is that the statistical formula for lifetime
in (51) has exactly the same form as the deterministic formula in (46). This relationship
will be usefully employed in the next section.

+1], 51

DATA EVALUATION

First, we consider the set of test data reported by Chiao for the stress rupture of strands
of an aramid fiber embedded in epoxy resin (Fig. 1) [9]. These results have been obtained
from an extensive and comprehensive test program at Lawrence Livermore National
Laboratory, with contributions from many people over many years. The testing method
involved hanging dead weights on the strands and recording the time of failure. The
volume fraction of the fiber phase was about 70%;,. The applied stress was normalized with
respect to the static strength, or the initial intrinsic strength in the terminology of the
present work. The various percentages in Fig. 1 are the percentages of strand failure. It
is seen from the data that at the higher stress levels the data seem to follow approximately
straight lines, but at the lower stress levels, the curves turn downward. It is our hypothesis
that the upper stress level behavior in Fig. 1 is controlled by mechanical degradation,
whereas the downturn represents the increasingly important effect of chemical degradation.
In view of the fact that the statistical life result in (51) and the deterministic result in (46)
have the same form, we will use the latter form to test the hypothesis on the 9% failure
envelope in Fig. 1. Only the 99 curve in Fig. 1 is used since it contains the most test data.

Before evaluating specific data cases, it is appropriate to discuss the idealization
involved in applying the present flaw growth theory to model the failure of the aligned
fiber strands. Certainly on a miscroscale, immensely complicated failure events must occur.
However, in our present idealization, the strand is taken to be totally fiber-dominated.
Under this idealization, neighboring fiber failures are viewed on a macroscale as an
advancing crack. Thus, the crack is taken to run transverse to fiber direction. Also, the
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Fig. 1. Stress-rupture of aramid epoxy strands at 20-28°C and 40% max. R. H.

chemical degradation is taken to relate to fiber deterioration. These idealizations are
probably quite reasonable for organic material fibers, as we consider here. For inorganic
fibers, a totally different type of model might be called for, one which would give more
emphasis to the matrix phase.

It is convenient to recast the result in (46) into real time variables. Let

=1 and 1=k (52)
fo o

where ¢, is the time parameter of the mechanical degradation theory and ¢, is the time
constant of the chemical degradation, according to first-order reaction rate theory. Using
(52), (46) becomes

ti=212 - log 12'°/"" +1 . (53)
I ()

Letting 7,—c0 in (53), we recover the power law form:

t 1

. S (34)
Ty
n

Letting t,—0 gives : -0, meaning that the material degrades instantly. Equations (53) and
(54) are suﬁiclcnt to accomplish our data reduction purposes.

The 9% failure envelope (or the 91% survival envelope) from Fig. 1 is replotted in Fig.
2 on a log-log scale. The upper portion of the data does indeed appear to be a straight
line, as would be predxcted by a lifetime power law form. Accordingly, the parameter n
and the time constant ¢, in (53) and (54) are evaluated such that (54) fits the straight line
portion of the data in Fig. 2. We found that n = 0.0533 and £, = 0.0561 h.
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Fig. 2. Theoretical predictions of interactive degradation (eqn 53).

Next, we must evaluate the time constant, t,, of chemical degradation. First, however,
we must have a reasonable indication that there was, in fact, a harmful chemical
environment. There is, in fact, independent evidence of such an effect. Chiao has reported
results on tests of strands that were stored in the same environment as the mechanically
loaded strands, but were not loaded [10]. That is, strands were stored without load, but
otherwise in the same environment as the loaded strands. These environmentally exposed
strands were then tested for static strength. It was reported that about a 5%, degradation
occurred in static strength due to environmental effects in one year. Furthermore, it was
argued that the specific environmental agent in this case, and time range, was ultraviolet
light radiation. The UV radiation induced chemical damage. For our purposes, we simply
treat the chemical degradation as being at an initial level of 5% of static strength per year.
Noting that 8.76 x 10° hours equals one year, we evaluate f, from

e~ @I x 10%) 0.95,

which gives 1, = 1.71 x 10°h.

For purposes of comparison, the levels of chemical degradation of 1 and 109 per year
also give 1%/y, 1.=8.72 x 10°h and 10%/y, t. = 8.31 x 10*h.

The complete calculations predicted by (53) are shown in Fig. 2. The independently
specified value of 5% per year chemical degradation does indeed come closest to matching
the experimental data in Fig. 2.

The procedure derived here does show that it is possible to interrelate mechanical
degradation and chemical degradation in a rational manner. Certaintly more elaborate
theories could be derived if necessary. In that event, the present approach may provide
guidelines for relating theoretical forms to experimental data even with multiple and
fundamentally different mechanisms of aging and degradation. We believe that the
physical concept of intrinsic strength and its mathematical formulation, as utilized here,
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are central to the means of characterizing damage growth and strenth degradation in
polymeric materials.
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